基于DSP技術的RFID讀寫器設計
作者:鄒立明,范科峰 ,戴 葵
來源:RFID世界網
日期:2009-02-10 09:31:37
摘要:文中介紹了RFID系統(tǒng)及RFID讀寫器,論述了基于DSP技術的RFID讀寫器設計方法。在描述RFID系統(tǒng)組成的基礎上,給出了讀寫器的軟硬件設計流程。重點闡述了RFID讀寫器的防沖突設計。該讀寫器已應用于門禁系統(tǒng)中,實際應用結果表明其性能良好。
RFID是Radio Frequency Identification的縮寫,即射頻識別。射頻識別(RFID)技術是從20世紀80年代興起并逐漸走向成熟的一項自動識別技術,它利用射頻方式進行非接觸雙向通信,以達到目標識別與數據交換的目的。RFID是一種非接觸式的自動識別技術,它通過射頻信號自動識別目標對象并獲取相關數據,識別工作無須人工干預。作為條形碼的無線版本,RFID技術具有條形碼所不具備的防水、防磁、耐高溫、使用壽命長、讀取距離大、標簽上數據可以加密、存儲數據容量更大、存儲信息更改自如等優(yōu)點,已經被世界公認為本世紀十大重要技術之一,在生產、零售、物流、交通等各個行業(yè)等各個行業(yè)有著廣闊的應用前景。我國的第2代身份證即采用了RFID技術,世界上最大的零售商沃爾瑪也要求其最大的100個供應商從2005年1月1日起開始采用RFID技術。
1 RFID概述
一個最基本的RFID系統(tǒng)如圖1,有以下幾部分組成:標簽(Tag),由耦合元件及芯片組成,每個標簽具有唯一的電子編碼,附著在物體上標識目標對象;讀寫器(Reader),讀取(有時還可以寫入)標簽信息的設備;天線(Antenna),在標簽和閱讀器間傳遞射頻信號。
2 讀寫器的設計
2.1 讀寫器的核心控件
在本讀寫器的設計中采用的控制核心器件是DS MS320F2812,它是TI公司2003年推出的32 bit定點DSP芯片。最高主頻可達150 MHz,128 kbit的Flash,18 kbit的RAM,16通道的12 bit ADC,支持ANCIC/C++。由于TMS320F2812內部集成了16通道的12 bit ADC,故無須再外擴ADC,這樣可以使硬件電路變得更簡潔。使DSP工作它采用了位域編程的環(huán)境,程序結構更加清晰,縮短軟件開發(fā)周期。
2.2 讀寫器的硬件設計
讀寫器的硬件組成,如圖2所示,是一個基于TMS320LF2812的DSP系統(tǒng),完成與電子標簽和上位機的雙向通信,其中DSP在與電子標簽的數據交換中完成編碼和解碼的功能。
在設計過程共配有4個天線,可根據不同的距離需求調換。在ISO15693協議中,電子標簽到讀寫器的數據采用負載調制的方式(同時使用副載波)進行發(fā)射,即首先將曼徹斯特編碼的信號加載到副載波(有ASK單副載波423.75 kHz和FSK 雙副載波423.75 kHz、484.28 kHz兩種方式),然后再將信號加載到主載波13.56 MHz上。因此,在讀寫器的接收通道中,首先通過帶通濾波器取出一個邊帶,放大后再送人解調器,解調器將邊帶信號與本地13.56 MHz載波混頻濾波后獲得調制到副載波上的中頻信號,再進行ASK或FSK檢波,從而得到曼徹斯特碼波形。這里所得的曼徹斯特碼波形沒有經過抽樣判決是模擬信號,經過DSP的片上AD采樣、處理、判決后進行解碼和校驗,完成整個信號的接收處理過程。
2.3 讀寫器的軟件設計
在ISO15693標準中,從讀寫器到電子標簽的數據編碼采用脈沖位置調制方,電子標簽支持兩種編碼模式,一種是1/256模式,一種是1/4模式。在1/256模式中,一個字節(jié)的值由脈沖的位置表示,脈沖的位置在連續(xù)的256個時間周期的某一處,其時間周期為256/f,(18.88μs,高低電平分別為9.44μs), 因此一個字節(jié)的傳輸需要4.833 ms。在1/4模式中,一個脈沖的位置確定一個字節(jié)的兩位(00,01,10或11),如圖3所示,4個連續(xù)的循環(huán)確定一個字節(jié),傳輸一個字節(jié)需要302.08μs。
2.4 設計結果分析
讀寫器從電子標簽接收的數據是按幀發(fā)送的,每一幀包括幀頭(SOF)、數據和幀尾(EOF),幀尾前是2個字節(jié)(16位)的CRC校驗值。本讀寫器接收數據的幀頭波形如圖4,接收數據的幀未波形與幀頭波形相反。讀寫器接收數據的波形如圖5所示,啟始部分是接收命令,第二部分是幀頭,第三部分是傳輸數據,最后是幀尾。讀寫器在向電子標簽發(fā)出一個命令后即開始采樣,如果在一定的時間內接收到SOF,說明有返回信號,則繼續(xù)采樣,直至接收到EOF;否則,立即返回。
2.5 防沖突程序設計
防沖突程序設計是讀寫器程序設計中的一個重要組成部分。防沖突序列的目的,是在VCD工作域中產生由VICC的惟一ID(UID)決定的VICCs目錄。VCD在與一個或多個VICCs通訊中處于主導地位。它通過發(fā)布目錄請求初始化卡通訊。當讀寫器進入工作狀態(tài)時,在其天線覆蓋范圍內的所有標簽將被激活,處于等待狀態(tài),隨時準備響應讀寫器指令操作,這就造成了標簽讀寫沖突。為了解決這一問題,標簽內部設計了自帶防沖突機制,只需利用相關的指令集輔助設計一種防沖突程序即可。
防沖突程序流程圖,如圖6所示。當處于激活狀態(tài)的標簽接收到讀寫器SELECT命令時,便發(fā)送自身UID給讀寫器。此時如果有一個以上的標簽同時發(fā)送UID,則讀寫器判定沖突發(fā)生,發(fā)送FAIL命令給標簽,標簽通過內部防沖突算法對自身相關參數值進行修改之后,符合條件的標簽將再次發(fā)送UID給讀寫器,由讀寫器判定沖突,重復上述操作,直到只有一個標簽符合條件,則跳出防沖突程序,進入標簽后續(xù)處理程序。同時,剩余標簽自動修改自身相關數值,為下一次讀取做準備,如果此時沒有符合條件的標簽,則讀寫器發(fā)送SUCCESS命令,標簽修改自身參數,等待讀寫器檢測命令 。
3 結束語
文中基于RFID的國際標準ISO15693,設計了工作于13.56 MHz的RFID讀寫器,可以進行全方向讀寫標簽的新型讀寫設備,配有輸入輸出IO、RS232、RS485及CAN總線等通信接口,配備有兩個天線,最大讀寫距離可以達到1.5 m-1.8 m左右,多卡識別能力達到每秒45張,可以有效地滿足各類RFID應用領域的需求。基于該讀寫器的門禁系統(tǒng)已經在實際中得到應用,實際效果良好。
1 RFID概述
一個最基本的RFID系統(tǒng)如圖1,有以下幾部分組成:標簽(Tag),由耦合元件及芯片組成,每個標簽具有唯一的電子編碼,附著在物體上標識目標對象;讀寫器(Reader),讀取(有時還可以寫入)標簽信息的設備;天線(Antenna),在標簽和閱讀器間傳遞射頻信號。
圖1 最基本的RFID系統(tǒng)
2 讀寫器的設計
2.1 讀寫器的核心控件
在本讀寫器的設計中采用的控制核心器件是DS MS320F2812,它是TI公司2003年推出的32 bit定點DSP芯片。最高主頻可達150 MHz,128 kbit的Flash,18 kbit的RAM,16通道的12 bit ADC,支持ANCIC/C++。由于TMS320F2812內部集成了16通道的12 bit ADC,故無須再外擴ADC,這樣可以使硬件電路變得更簡潔。使DSP工作它采用了位域編程的環(huán)境,程序結構更加清晰,縮短軟件開發(fā)周期。
2.2 讀寫器的硬件設計
讀寫器的硬件組成,如圖2所示,是一個基于TMS320LF2812的DSP系統(tǒng),完成與電子標簽和上位機的雙向通信,其中DSP在與電子標簽的數據交換中完成編碼和解碼的功能。
圖2 讀寫器硬件結構圖
在設計過程共配有4個天線,可根據不同的距離需求調換。在ISO15693協議中,電子標簽到讀寫器的數據采用負載調制的方式(同時使用副載波)進行發(fā)射,即首先將曼徹斯特編碼的信號加載到副載波(有ASK單副載波423.75 kHz和FSK 雙副載波423.75 kHz、484.28 kHz兩種方式),然后再將信號加載到主載波13.56 MHz上。因此,在讀寫器的接收通道中,首先通過帶通濾波器取出一個邊帶,放大后再送人解調器,解調器將邊帶信號與本地13.56 MHz載波混頻濾波后獲得調制到副載波上的中頻信號,再進行ASK或FSK檢波,從而得到曼徹斯特碼波形。這里所得的曼徹斯特碼波形沒有經過抽樣判決是模擬信號,經過DSP的片上AD采樣、處理、判決后進行解碼和校驗,完成整個信號的接收處理過程。
2.3 讀寫器的軟件設計
在ISO15693標準中,從讀寫器到電子標簽的數據編碼采用脈沖位置調制方,電子標簽支持兩種編碼模式,一種是1/256模式,一種是1/4模式。在1/256模式中,一個字節(jié)的值由脈沖的位置表示,脈沖的位置在連續(xù)的256個時間周期的某一處,其時間周期為256/f,(18.88μs,高低電平分別為9.44μs), 因此一個字節(jié)的傳輸需要4.833 ms。在1/4模式中,一個脈沖的位置確定一個字節(jié)的兩位(00,01,10或11),如圖3所示,4個連續(xù)的循環(huán)確定一個字節(jié),傳輸一個字節(jié)需要302.08μs。
圖3 1/4模式編碼
2.4 設計結果分析
讀寫器從電子標簽接收的數據是按幀發(fā)送的,每一幀包括幀頭(SOF)、數據和幀尾(EOF),幀尾前是2個字節(jié)(16位)的CRC校驗值。本讀寫器接收數據的幀頭波形如圖4,接收數據的幀未波形與幀頭波形相反。讀寫器接收數據的波形如圖5所示,啟始部分是接收命令,第二部分是幀頭,第三部分是傳輸數據,最后是幀尾。讀寫器在向電子標簽發(fā)出一個命令后即開始采樣,如果在一定的時間內接收到SOF,說明有返回信號,則繼續(xù)采樣,直至接收到EOF;否則,立即返回。
圖4 讀寫器接收數據的幀頭波形
圖5 讀寫器接收數據的波形
2.5 防沖突程序設計
防沖突程序設計是讀寫器程序設計中的一個重要組成部分。防沖突序列的目的,是在VCD工作域中產生由VICC的惟一ID(UID)決定的VICCs目錄。VCD在與一個或多個VICCs通訊中處于主導地位。它通過發(fā)布目錄請求初始化卡通訊。當讀寫器進入工作狀態(tài)時,在其天線覆蓋范圍內的所有標簽將被激活,處于等待狀態(tài),隨時準備響應讀寫器指令操作,這就造成了標簽讀寫沖突。為了解決這一問題,標簽內部設計了自帶防沖突機制,只需利用相關的指令集輔助設計一種防沖突程序即可。
防沖突程序流程圖,如圖6所示。當處于激活狀態(tài)的標簽接收到讀寫器SELECT命令時,便發(fā)送自身UID給讀寫器。此時如果有一個以上的標簽同時發(fā)送UID,則讀寫器判定沖突發(fā)生,發(fā)送FAIL命令給標簽,標簽通過內部防沖突算法對自身相關參數值進行修改之后,符合條件的標簽將再次發(fā)送UID給讀寫器,由讀寫器判定沖突,重復上述操作,直到只有一個標簽符合條件,則跳出防沖突程序,進入標簽后續(xù)處理程序。同時,剩余標簽自動修改自身相關數值,為下一次讀取做準備,如果此時沒有符合條件的標簽,則讀寫器發(fā)送SUCCESS命令,標簽修改自身參數,等待讀寫器檢測命令 。
圖6 防沖突程序流程圖
3 結束語
文中基于RFID的國際標準ISO15693,設計了工作于13.56 MHz的RFID讀寫器,可以進行全方向讀寫標簽的新型讀寫設備,配有輸入輸出IO、RS232、RS485及CAN總線等通信接口,配備有兩個天線,最大讀寫距離可以達到1.5 m-1.8 m左右,多卡識別能力達到每秒45張,可以有效地滿足各類RFID應用領域的需求。基于該讀寫器的門禁系統(tǒng)已經在實際中得到應用,實際效果良好。